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Abstract

Finite sets of market data may not suffice to determine Pareto-improving policies.
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1. Introduction

When competitive markets fail to exhaust gains from trade, the question arises whether it is possible to design
policies that induce a Pareto improvement. The transfer paradox, introduced by Leontieff (1936),2 illustrates the
difficulties implicit in policy design: without information about fundamentals that are unobservable, such as individual
preferences, the prediction of the welfare effects of economic policy is far from obvious.

The theory of general equilibrium with incomplete markets argues that the problem of policy identification is,
indeed, of interest: Geanakoplos and Polemarchakis (1986) showed that, when individuals face uninsurable risks, there
exist, typically, policies of asset reallocation (which subjects the design of the policy to the same financial constraints
that bind the individuals in the competitive market) that make every individual in the economy ex-ante better off.3

Early literature on the empirical structure imposed by the competitive equilibrium hypothesis at the aggregate
level was understood to imply that the difficulties associated with the identification of Pareto-improving policies
were insurmountable: the Sonnenschein–Mantel–Debreu theorem4 was understood to imply that no information about
individual (unobservable) preferences could be elicited from aggregate data.

∗ Corresponding author. Tel.: +44 2476 523040; fax: +44 2476 523032.
E-mail addresses: A.M.Carvajal@Warwick.ac.uk (A. Carvajal), H.Polemarchakis@warwick.ac.uk (H.M. Polemarchakis).

1 Tel.: + 44 2476 150051; fax: +44 2476 523032.
2 Donsimoni and Polemarchakis (1994) stated the paradox in a general setting; Turner (2004) finds bounds on the amount of trade that is required,

at equilibrium, for the transfer paradox to arise.
3 This result, which had been suggested by Stiglitz (1982), was later refined by Citanna et al. (1998) and it was extended to other types of policy

by Citanna et al. (2006).
4 Sonnenschein (1974), Mantel (1974), Debreu (1974); see also Mas-Colell (1977).

0304-4068/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jmateco.2007.04.008

mailto:A.M.Carvajal@Warwick.ac.uk
mailto:H.Polemarchakis@warwick.ac.uk
dx.doi.org/10.1016/j.jmateco.2007.04.008


168 A. Carvajal, H.M. Polemarchakis / Journal of Mathematical Economics 44 (2008) 167–179

Very perceptively, however, Brown and Matzkin (1990, 1996) introduced an element that was missing in the
discussion of the empirical implications of the competitive equilibrium model: the effects of perturbations to
individual endowments yield testable restrictions on the graph of the equilibrium correspondence of a standard
exchange economy. This idea was exploited by Chiappori et al. (2004), Matzkin (2005) and Carvajal and Riascos
(2005), to show that, in economies without uncertainty, the graph of the equilibrium correspondence can be used to
identify individual preferences.

The argument for identification extends to economies with uncertainty and an incomplete asset market, as was
shown by Kübler et al. (2002) and Carvajal and Riascos (2006); but the extension requires the observation of relatively
open subsets of the graph of the correspondence.

Here, we show that finite data sets of equilibrium information may be insufficient for the identification of Pareto-
improving policies, let alone of preferences. We restrict our attention to the types of policies considered by the original
argument of Geanakoplos and Polemarchakis (1986), and show that finite data sets need not suffice for the identification
of individual marginal utilities of income in different states of the world.

The intuition for this failure of identification of Pareto-improving asset reallocations is straightforward: Pareto-
improving policies exist when market incompleteness allows the vectors of marginal utilities of revenue across states
of the world of different individuals to diverge from co-linearity even at equilibrium. But, with vectors of marginal
utilities of revenue that are neither identified nor collinear, Pareto-improving policies are unclear: on the basis of
observed data, a profile of preferences in which the policy leaves at least one individual worse off cannot be ruled
out.

2. Not everything will do

Consider a finite, two-period economy with uncertainty. Suppose that there are I individuals, S states of nature and L
commodities, with commodity 1 acting as numèraire, and that there are A < S linearly independent numèraire assets.
Denote asset payoffs in state s by rs ∈RA.

Let U be the class of all strongly concave and strictly monotone C2 functions v : RL++ → R.
For individual i, contingent on state s, endowments are ei

s � 0 and preferences are ui
s ∈U. There is no date-zero

consumption, so a consumption plan is x = (xs)Ss=1. Ex-ante preferences are Ui(x) = ∑S
s=1u

i
s(xs).

Let ps ∈P = {p ∈RL++ : p1 = 1} be commodity prices contingent on state s, and let p = (ps)Ss=1. Denote asset
prices by q, and let zi be individual i’s portfolio of assets.

If (q, p, (zi, xi)
I
i=1) is a financial markets equilibrium of this economy, then, generically in the space of economies,

there exists a redistribution of individual asset holdings that makes every individual in the economy ex-ante better off
(Geanakoplos and Polemarchakis, 1986). That is, for some (dzi)

I
i=1, with

∑
idzi = 0, it is true that, for all i, dUi =∑

sdui
s > 0, where dui

s is the (spot) general equilibrium welfare effect resulting from revenue transfers (rs dzj)
I
j=1 at

spot equilibrium (ps, (xj
s )

I

j=1) in exchange economy (uj
s , e

j
s + rsz

j(1, 0, . . . , 0))
I

j=1.
Suppose that, after asset markets have closed, a planner who knows the asset market and who has observed asset

prices, q, and individual portfolios, (zi)
I
i=1, but who does not know the fundamentals of the economy, namely state-

contingent endowments and preferences, attempts to design one such asset redistribution. From an application of the
transfer paradox, it follows, with minor qualifications, that this task is impossible: the appropriate policy is not identified
from observation of data from the asset markets alone.

Proposition 1. Information from asset markets does not identify Pareto-improving policies. Let (dzi)
I
i=1 be an asset

redistribution:
∑

idzi = 0; if for each state there is at least one individual whose income and utility are perturbed

(namely, rs dzi �= 0 and dui
s �= 0), then there exists an alternative ex-ante economy, ((ũi

s, ẽ
i
s)

S

s=1)
I

i=1, that

1. cannot be ruled out on the basis of observed data: this economy has a financial markets equilibrium,
(q̃, p̃, (z̃i, x̃i)

I
i=1), that is consistent with the observed data in the sense that q̃ = q and, for every individual, z̃i = zi;

and
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2. yields the opposite welfare effects for the given policy: letting Ũi(x) = ∑
sũ

i
s(xs), the ex-ante welfare effects of the

given policy are, for each individual i, dŨi = −dUi.5

Proof. By construction, for each individual i, contingent on state s, marginal utility of revenue is λi
s > 0 such that

Dui
s(x

i
s) = λi

sps, while for some λi
0 > 0,

∑
sλ

i
srs = λi

0q. Also, psx
i
s = pse

i
s + rsz

i and qzi = 0.
Define bi

s = −(1/λi
s) dui

s. For each s, since
∑

idzi = 0, it follows that
∑

ib
i
s = 0 and, hence, by Donsimoni and

Polemarchakis (1994), there exists an exchange economy (f i
s ∈U, ωi

s � rsz
i(1, 0, . . . , 0))

I

i=1 and a pair (p̃s, (x̃i
s)

I

i=1)

such that (i) (p̃s, (x̃i
s)

I

i=1) is (spot) equilibrium for economy (f i
s , ω

i
s)

I

i=1; (ii) Df i
s (x̃i

s) = p̃s; and (iii) as a consequence

of revenue transfer (dωi
1,s = rs dzi)

I

i=1
, spot welfare effects are df i

s = bi
s.

Define ũi
s(x) = λi

sf
i
s (x) and ẽi

s = ωi
s − rsz

i(1, 0, . . . , 0).
By construction, p̃sẽ

i
s + rsz

i = p̃sω
i
s and Dũi

s(x̃
i
s) = λi

sp̃s. Also,
∑

sλ
i
srs = λi

0q,
∑

ix̃
i
s = ∑

iẽ
i
s and

∑
iz

i = 0, so

(q, p̃, (zi, x̃i)
I
i=1) is a financial markets equilibrium for the alternative economy.

On the other hand, for each s,

∑
s

dũi
s =

∑
s

λi
s df i

s =
∑

s

λi
sb

i
s = −

∑
s

λi
s

dui
s

λi
s

= −
∑

s

dui
s. �

Hence, for a given asset reallocation, all the information available from the markets that have actually been open
fails to distinguish the true economy from an alternative one in which the same reallocation has the opposite welfare
effects. In particular, the information does not distinguish an economy in which the policy is Pareto-improving from
one in which it is Pareto impairing.6

This basic result is subject to criticism if it is plausible to assume that a planner may have available information
from commodity markets for (i) multiple equilibria of the economy, or (ii) a longer history of observed data.

3. Multiple observations

Suppose now that, after asset markets have closed, when the asset redistribution is to be designed, the planner knows
not only the prices and quantities of the markets that have been open, but also future state-contingent commodity
prices, individual endowments and individual consumption plans. Suppose, furthermore, that multiple observations are
available. When this data set is sufficiently rich so as to allow identification of individual income effects, Kübler et al.
(2002) and Carvajal and Riascos (2006) have shown that, under regularity conditions, unobserved fundamentals, namely
preferences, can be recovered. In order to identify income effects, however, these arguments require the observation
of relatively open subsets of the equilibrium manifold, which rules out the possibility of finite data sets. The question
we address here is whether finite data allow for identification of policies, even if not of preferences.

Suppose that there are T observations: a data set is a sequence of prices from all markets, individual plans for all

variables, and individual endowments in all states (qt, pt, (zi,t, xi,t, ei,t)
I
i=1)

T

t=1.7 Assume that xi,t
s � 0 and xi,t′

s �= xi,t
s ,

when t′ �= t, for every i, every t and every s.
Suppose that after asset markets have closed for the economy with endowments (ei,T )

I
i=1, and the observed equilib-

rium is (qT , pT , (zi,T , xi,T )
I
i=1), a Pareto-improving asset redistribution has to be designed. Suppose that it is known that

every observation in the data set reflects financial markets equilibrium: for all t, it is known that (qt, pt, (zi,t, xi,t)
I
i=1)

is an equilibrium for the economy with endowments (ei,t)
I
i=1. Suppose also that, for every s, (pT

s , (xi,T
s )

I

i=1) is a regular

equilibrium of (spot) economy (ui
s, e

i,T
s + rsz

i,T )
I

i=1.

5 For dŨi, let dũi
s be the (spot) general equilibrium welfare effect, for individual i, resulting from revenue transfers (rs dzj)

I
j=1 at spot equilibrium

(p̃s, (x̃j
s )

I

j=1) in exchange economy (ũj
s , ẽ

j
s + rsz

j(1, 0, . . . , 0))
I

j=1, and let dŨi =
∑

s
dũi

s.
6 It should be noticed that this analysis assumes that individual endowments are unknown. This is necessary in the argument only for the purpose

of satisfying non-negativity constraints, and neither the fact that observed prices are part of a financial equilibrium for the constructed economy, nor
the fact that welfare effects go in opposite directions for both economies depend on the exact value of the constructed endowments.

7 Here, pt = (pt
s)

S
s=1, xi,t = (xi,t

s )
S

s=1, and ei,t = (ei,t
s )

S

s=1.
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We next show that if individual preferences are unknown, with some qualification, even all this information fails
to identify Pareto-improving policies: one can find a second profile of preferences, also consistent with the data, with
the property that any policy that is Pareto-improving in the first profile makes at least one consumer worse-off if real
preferences are the second profile.

Denote by λi,t
s > 0 the marginal utility of revenue for individual i in state s, for the tth observation on the data set.

By definition, Dui
s(x

i,t
s ) = λi,t

s pt
s. Also, let λ

i,t
0 > 0 such that

∑
sλ

i,t
s rs = λ

i,t
0 qt .

Proposition 2. Suppose that for every individual, i, there exists a solution

((ki,t > 0)
T

t=1, ((μi,t
s )

S

s=1)
T−1

t=1 )

to the system of inequalities

ki,tDui
s(x

i,t
s ) · (xi,t

s − xi,T
s ) < μi,t

s , t ≤ T − 1;

μi,t
s < ki,T

∑
j �=i

λ
j,T
s

λ
i,T
s

Dui
s(x

i,T
s ) · (xi,t

s − xi,T
s ), t ≤ T − 1;

μi,t′
s < μi,t

s + ki,tDui
s(x

i,t
s ) · (xi,t′

s − xi,t
s ), t, t′ ≤ T − 1, with t �= t′.

Then, Pareto-improving policies are not identified by the data: there exist, for every individual and state, state-
contingent preferences, ũi

s ∈U, that

1. cannot be ruled out on the basis of observed data: for each observation, (qt, pt, (zi,t, xi,t)
I
i=1) is a financial markets

equilibrium for economy ((ũi
s, e

i,t
s )

S

s=1)
I

i=1; and

2. yield opposite aggregate ex-ante welfare effects for every asset redistribution at observation T: it for every (dzi)
I
i=1

such that
∑

idzi = 0, it is true that
∑

idŨi,T = −∑
idUi,T .8 Moreover, if there are only two individuals in the

economy, ex-ante welfare effects are (dŨ1,T , dŨ2,T ) = −(dU2,T , dU1,T ).

Proof. From a solution to the corresponding system of inequalities for each individual, it follows from Lemma 1 (see
Appendix 1) that there exist state-contingent preferences ũi

s ∈U such that:

1. for every observation t ≤ T − 1, the gradient at xi,t
s satisfies

Dũi
s(x

i,t
s ) = ki,t

ki,T
Dui

s(x
i,t
s );

2. in an open neighborhood of xi,T
s , the function satisfies

ũi
s(x) =

∑
j �=i

λ
j,T
s

λ
i,T
s

ui
s(x).

8 Here, dUi,T =
∑

s
du

i,T
s and dŨi,T =

∑
s
dũ

i,T
s , where du

i,T
s and dũ

i,T
s are the welfare effects for individual i, resulting from revenue transfers

(rs dzj)
I
j=1 at spot equilibrium (pT

s , (xj,T
s )

I

j=1) in exchange economies (uj
s , e

j,T
s + rsz

j,T )
I

j=1 and (ũj
s , e

j,T
s + rsz

j,T )
I

j=1, respectively.
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Fix t ≤ T − 1. Let λ̃i,t
s = (ki,t/ki,T )λi,t

s , for all i and all s = 0, . . . , S. Given condition 1 above, we have that

Dũi
s(x

i,t
s ) = ki,t

ki,T
Dui

s(x
i,t
s ) = ki,t

ki,T
λi,t

s pt
s = λ̃i,t

s pt
s,

while
∑

s

λ̃i,t
s rs =

∑
s

ki,t

ki,T
λi,t

s rs = ki,t

ki,T

∑
s

λi,t
s rs = ki,t

ki,T
λ

i,t
0 qt = λ̃

i,t
0 qt,

from where (qt, pt, (zi,t, xi,t)
I
i=1) is an equilibrium for ((ũi

s, e
i,t
s )

S

s=1)
I

i=1.

To see that (qT , pT , (zi,T , xi,T )
I
i=1) is an equilibrium for ((ũi

s, e
i,T
s )

S

s=1)
I

i=1, let λ̃i,T
s = ∑

j �=iλ
j,T
s , for all i and s =

0, . . . , S; observe that, by condition 2,

Dũi
s(x

i,T
s ) =

∑
j �=i

λ
j,T
s

λ
i,T
s

Dui
s(x

i,T
s ) =

∑
j �=i

λj,T
s pT

s = λ̃i,T
s pT

s ,

while ∑
s

λ̃i,T
s rs =

∑
s

∑
j �=i

λj,T
s rs =

∑
j �=i

∑
s

λj,T
s rs =

∑
j �=i

λ
j,T
0 qT = λ̃

i,T
0 qT .

Now, let �T
s = ∑

iλ
i,T
s . Since, by condition 2 above, dpT

s is the same in exchange economies (ui
s, e

i,T
s + rsz

i,T )
I

i=1

and (ũi
s, e

i,T
s + rsz

i,T )
I

i=1, it follows that

dũi,T
s =

∑
j �=i

λ
j,T
s

λ
i,T
s

dui,T
s =

(
�T

s

λ
i,T
s

− 1

)
dui,T

s

and, hence,

∑
i

dũi,T
s = �T

s

∑
i

dui,T
s

λ
i,T
s

−
∑

i

dui,T
s = −

∑
i

dui,T
s ,

because
∑

idzi = 0 implies
∑

idui,T
s /λi,T

s = 0. It then follows that∑
i

∑
s

dũi,T
s =

∑
s

∑
i

dũi,T
s = −

∑
s

∑
i

dui,T
s = −

∑
i

∑
s

dui,T
s .

In the particular case of two individuals, with j �= i, in a neighborhood of xi,T
s , ũi

s = (λj,T
s /λi,T

s )ui
s, while, by

successive applications of Roy’s identity,

dui,T
s = λi,T

s (dps(e
i,T
s − xi,T

s ) + rs dzi(1, 0, . . . , 0)) = λi,T
s (dps(x

j,T
s − ej,T

s ) − rs dzj(1, 0, . . . , 0))

= − λi,T
s

λ
j,T
s

duj,T
s ,

so
∑

sdũi,T
s = ∑

s(λ
j,T
s /λi,T

s ) dui,T
s = −∑

sdu
j,T
s . �

The assumption of the proposition guarantees the second-order conditions for the economy we construct, so it
implies that the first-order conditions are not only necessary but also sufficient, as we need. This is required because
we need the ex-ante utility functions to be strongly quasiconcave: since we are assuming additive separability of the
ex-ante preferences, it does not suffice for us to impose strong quasiconcavity of the state-contingent utility functions,
and we do require strong concavity; but then, since we construct the alternative economy using local, non-infinitesimal
perturbations of the norm of the gradient of the original preferences (around the equilibrium consumptions for the
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observation where the policy has to be designed), we cannot claim that the cardinal property is preserved automatically,
and we need to guarantee it by making up for these perturbations, at all other observed equilibria, uniformly across
states (notice that, for all i, ki,t is independent of s); a solution to the system of inequalities suffices for us to be able to
preserve strong quasiconcavity of ex-ante preferences after the perturbations.

For every individual i, the system introduced by the proposition can be rewritten as

ki,tλi,t
s pt

s · (xi,t
s − xi,T

s ) < μi,t
s , all s and t ≤ T − 1;

μi,t
s < ki,T

∑
j �=i

λj,T
s pT

s · (xi,t
s − xi,T

s ), all s and t ≤ T − 1;

μi,t′
s < μi,t

s + ktλi,t
s pt

s · (xi,t′
s − xi,t

s ), all s and t, t′ ≤ T − 1, with t �= t′.

This system is a finite set of polynomial inequalities, so the set containing all the values of the variables that solve
it is, by definition, a semi-algebraic set (see Mishra, 1993). By the Tarski-Seidenberg theorem (see Theorem 8.6.6 in

Mishra, 1993), its projection into the space of all variables but ((ki,t)
T
t=1, ((μi,t

s )
S

s=1)
T−1

t=1 ) is itself semi-algebraic. This
means that, given a data set, there exists a finite set of polynomial inequalities on the (original) vectors of marginal
utilities of income, for all individuals that suffices for the implication of the theorem. Since this application of the
Tarski-Seidenberg theorem does not immediately tell us how to find the quantifier-free equivalent assumption (it only
tells us that it exists, and that it defines a semi-algebraic set), it is important to notice that the system introduced by
the theorem is linear on the quantified variables, so the problem of determining whether it has a solution is equivalent
to the first step of a linear programming algorithm, and can be solved in finitely many steps (Blow et al., 2006). Still,
this does not rule out the possibility that there does never exist a solution to this system, in which case the theorem
would be vacuous. Appendix 2 shows that this is not the case: two general conditions in which the system has a
solution are given in the appendix; they show that all the variables in the system are used, and also that there may be
cases in which conditions are easy to check. For instance, if pT

s · (xi,t
s − xi,T

s ) ≤ 0, for all s and all t ≤ T − 1, with
strict inequality for some s and t, then the system does have a solution for individual i. That is, if for each individual
i and state s, bundle xi,T

s is revealed preferred, in the ex-post sense, to every other xi,t
s , the system has a solution

and the data fails to identify Pareto-improving policies; this is because, in this case, the required perturbations to the
gradients are given around the highest ‘observed’ indifference surfaces and, therefore, pose no difficulty for strong
concavity.

4. Multiple observations and rationalizability

Literature on the empirical content of theories distinguishes two problems: rationalizability (existence) and identifi-
cation (uniqueness) of fundamentals consistent with observed data and theory. Typically, theoretical work concentrates
on only one of the two problems and, in particular, literature on identification takes rationalizability for granted (e.g.
Kübler et al., 2002; Carvajal and Riascos, 2006). So far we have done the same: we have assumed the existence of
a profile of preferences that explains observed data and have concentrated on finding a second profile which (i) is
consistent with the data too, and (ii) gives welfare effects that are opposite to the ones given by the original profile, for
any policy. This is a non-identification result, by (i), which is stronger and of particular interest, because of (ii); yet it
still assumes rationalizability.

One can study the rationalizability and identification problems simultaneously: consider the question of whether a
data set can be rationalized by two profiles of preferences with the property that any policy that is Pareto efficient in
one of them makes at least one individual worse off, if the real preferences are the alternative profile.

In order to answer this question, it suffices that we substitute the assumption that for some known preferences,

((ui
s)

S

s=1)
I

i=1, it is true that every (qt, pt, (zi,t, xi,t)
I
i=1) is an equilibrium for the economy ((ui

s, e
i,t
s )

S

s=1)
I

i=1, by an
alternative condition on the data set that suffices to imply the existence of that first profile of preferences.
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If one assumes that the data set does not directly violate equilibrium conditions,9 then, using Theorem 2 in Matzkin
and Richter (1991), it suffices that there exist λi,t

s > 0 and ui,t
s , for all individual, state and observation, such that

ui,t′
s < ui,t

s + λi,t
s pt

s · (xi,t′
s − xi,t

s ), whenever t �= t′, and λ
i,t
0 qt = ∑

sλ
i,t
s rs.10

The importance of this assumption is that all these conditions (including the ones directly observed on the data) are
polynomial inequalities, so by adding them to the individual systems introduced by Proposition 2, we have a system
that guarantees the existence of two profiles of preferences with opposite aggregate ex-ante welfare effects for any
asset reallocation. By appealing again to the Tarski-Seidenberg theorem, it follows that this system can be replaced by
a finite set of conditions purely on the data set. By the results obtained in Appendix 2, it follows that such system is
non-contradictory.

Corollary 1. There exists a finite,11non-contradictory system of polynomial inequalities that suffices for the existence
of state-contingent preferences ui

s ∈U and ũi
s ∈U, for all i and s, satisfying that

1. for every t, observed (qt, pt, (zi,t, xi,t)
I
i=1) is equilibrium for economy ((ui

s, e
i,t
s )

S

s=1)
I

i=1;

2. for every t, observed (qt, pt, (zi,t, xi,t)
I
i=1) is equilibrium for economy ((ũi

s, e
i,t
s )

S

s=1)
I

i=1;

3. for every asset reallocation, (dzi)
I
i=1, it is true that

∑
i

∑
sdũi,T

s = −∑
i

∑
sdui,T

s .

Suppose that a planner has available a finite data set of prices, profiles of endowments and trades. He may ask
whether the data set can be explained by the Walrasian model and, if so, whether it can be used to identify a Pareto-
improving policy. The corollary says that it may well happen that the answer to the second part of the question is
negative, although the answer to the first part is affirmative.

5. Long histories of data

Suppose now that, unlike in the previous sections, the economy evolves over a horizon of T periods, and that what
one observes is the evolution of prices over one competitive equilibrium path. We now argue that in this setting the
non-identification result extends, and that it is stronger in the sense that it requires no qualification.

Let � be a finite tree of events. Denote by �T the set of terminal nodes.12 For every node σ, let f (σ) be the set
containing all its immediate successors. Denote by �T−1 the set of pre-terminal nodes.13 Let σ0 be the initial node,
and for every σ �= σ0, let b(σ) denote its immediate predecessor.

State-contingent preferences and endowments for individual i are ui
σ ∈U and ei

σ ∈RL++. At every non-terminal
node σ, there is a finite set, Aσ , of one-period numèraire assets: at σ′ ∈ f (σ), the return of asset a ∈ Aσ is ra

σ′ . Denote
rσ = (ra

σ)a ∈ Ab(σ)
.

At node σ, commodity prices are pσ and individual consumptions are xi
σ . At non-terminal σ, asset prices are qσ and

individual portfolios are zi
σ .

Suppose that a planner observes an equilibrium (p, q, (xi, zi)
I
i=1), and suppose that at a given pre-terminal node σ,

an asset redistribution is to be designed after asset markets have closed (so all that remains in the economy is one last
period of trade in commodities).14 Does the information about all prices and quantities, past, present and future, and
even counterfactual (from states that did not or will not occur) identify Pareto-improving interventions?

Proposition 3. Market information does not identify Pareto-improving policies. That is, let (p, q, (xi, zi)
I
i=1) be a

financial markets equilibrium for economy ((ui
σ, ei

σ)σ ∈ �)
I

i=1; there exist individual state-contingent preferences ũi
σ ∈U,

for all i and all σ, that

9 That is, if pt
s(x

i,t
s − e

i,t
s ) = rsz

i,t , qtzi,t = 0,
∑

i
x

i,t
s =

∑
i
e
i,t
s and

∑
i
zi,t = 0.

10 That the Tth observation can be taken as a regular equilibrium follows from Brown and Shannon (2000).

11 In (RA × PS × ((RL++ × RL++)
S × RA)

I
)
T

.
12 For simplicity, it is assumed that all histories leading to a terminal node have the same number of nodes.
13 That is, σ ∈ �T−1 if, and only if, f (σ) ⊆ �T .
14 As before, suppose that for each σ′ ∈ f (σ), (pσ′ , (xi

σ′ )
I

i=1
) is a regular equilibrium of (spot) economy (ui

σ′ , ei
σ′ + rσ′zi

σ )
I

i=1
.
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1. cannot be ruled out on the basis of observed data: observed (p, q, (xi, zi)
I
i=1) is a financial markets equilibrium for

((ũi
σ, ei

σ)σ ∈ �)
I

i=1 too; and
2. give opposite aggregate welfare effects for any asset reallocation: for every preterminal node, σ ∈ �T−1, and every

asset reallocation (dzi
σ)

I

i=1,15it is true that

∑
i

∑
σ′ ∈ f (σ)

dũi
σ′ = −

∑
i

∑
σ′ ∈ f (σ)

dui
σ′ .

Proof. The argument is similar to the proof of Proposition 2, so details are omitted. For each i, let λi
σ be the marginal

utility of income at equilibrium in state σ. Define the new preferences by

ũi
σ(x) =

∑
j �=i

λ
j
σ

λi
σ

ui
σ(x). �

When there are only two consumers, the stronger implication that the equilibrium information fails to distinguish an
economy in which a policy is Pareto-improving and one in which it is Pareto-impairing still applies. Importantly, this
result requires no qualification, since utility perturbations are given globally without compromising strong concavity.
An immediate extension follows.

Corollary 2. Suppose that for every individual i, there are state-independent preferences ui ∈U such that state-
contingent preferences are ui

σ = πi
σui for some πi

σ > 0. Let (p, q, (xi, zi)
I
i=1) be a financial markets equilibrium for

(ui, (πi
σ, ei

σ)σ ∈ �)
I

i=1. There exist individual state-independent preferences ũi ∈U and state weights π̃i
σ > 0 that

1. cannot be ruled out on the basis of observed data: observed (p, q, (xi, zi)
I
i=1) is a financial markets equilibrium for

(ũi, (π̃i
σ, ei

σ)σ ∈ �)
I

i=1; and
2. give opposite aggregate welfare effects for any asset reallocation: for every preterminal node, σ ∈ �T−1, and every

asset reallocation (dzi)
I
i=1, it is true that 16

∑
i

∑
σ′ ∈ f (σ)

π̃i
σ′ dũi

σ′ = −
∑

i

∑
σ′ ∈ f (σ)

πi
σ′ dui

σ′ .

Proof. Define λi
σ as in the previous proof, and let ũi = ui and

π̃i
σ =

∑
j �=i

λ
j
σ

λi
σ

πi
σ. �

6. Concluding remarks

If an economy is non-stationary, observation of all market information does not suffice to identify Pareto-improving
policies. There exists a profile of preferences which would have yielded the exact same equilibrium information, but

15 As before,
∑

i
dzi

σ = 0.
16 Here, dui

σ− and dũi
σ′ are, respectively, individual i’s welfare effects resulting from revenue transfer (rσ′ dzj)

I
j=1, at spot equilibrium (pσ′ , (xj

σ′ )
I

j=1
),

in exchange economies (uj, e
j

σ′ + rσ′zj(1, 0, . . . , 0))
I

j=1
and (ũj, e

j

σ′ + rσ′zj(1, 0, . . . , 0))
I

j=1
.
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for which any reallocation policy would have opposite effects: if it is Pareto-improving in the real economy, there
is at least one individual who is made worse off in the other economy. The intuition is that one equilibrium is not
enough to pin down the vector of marginal utilities of income at the terminal nodes for each individual. One can shuffle
and add these vectors across individuals and still respect observed market behavior. The fact that one cannot rule out
these different profiles of marginal utilities is relevant when they are not collinear, which is the condition under which
Pareto-improving reallocations exist in the first place. The result is then most meaningful: the same feature of the
equilibrium that explains the existence of Pareto-improving policies implies that it is impossible to identify one such
policy.

When the data set is a series of equilibrium prices and endowments for a two-period economy, the problem is more
restrictive and the non-identification results are weakened. This is so, because the shuffling and addition of marginal
utilities of income implies non-infinitesimal perturbations to the (norm of the gradient of) utility functions at the points
where policy is to be attempted. When multiple equilibria have to be rationalized, these perturbations must be local.
But then, since we have additively separable preferences, the necessity to guarantee concavity weakens the result. In
this paper, we guarantee concavity via a system similar to Afriat inequalities. It follows that there do exist conditions
on the data under which one can ensure the existence of multiple rationalizations yielding different welfare effects for
any policy.

In both settings, when identification fails, market performance is less questionable on grounds of its inefficiency.
Granted, there may be Pareto-improving policies, but market information does not suffice for their design.

Open questions remain: our setting does not consider Markovian economies; we do not consider policies other than
asset reallocation; by the qualification of the result in the case of multiple observations, our results cannot say what
happens as one increases, asymptotically, the number of observations in a neighborhood of the equilibrium where
policy is to be designed; finally, our results do not say whether or not a mechanism can be designed in order to elicit
information about the consumers’ preferences.
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Appendix 1. Non-infinitesimal perturbation of a strongly concave function

Lemma 1. Fix u ∈U, � ∈R++ and take a finite sequence (xt)Tt=1 in RL+, such that xt �= xt′ for t �= t′. Let

((kt > 0)Tt=1, (μt)T−1
t=1 ) solve the system

ktDu(xt) · (xt − xT ) < μt, all t ≤ T − 1;

μt < kT �Du(xT ) · (xt − xT ), all t ≤ T − 1;

μt′ < μt + ktDu(xt) · (xt′ − xt), all t, t′ ≤ T − 1,witht �= t′.

There exists ũ ∈U such that:

1. for every t ≤ T − 1, Dũ(xt) = (kt/kT )Du(xt);
2. there exists ε > 0 such that, for all x ∈ Bε(xT ), ũ(x) = �u(x).
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Proof. For every t ≤ T − 1, define vt = �u(xT ) + μt/kT . By construction,

�u(xT ) < vt + kt

kT
Du(xt) · (xT − xt), all t ≤ T − 1;

vt < �u(xT ) + �Du(xT ) · (xt − xT ), all t ≤ T − 1;

vt′ < vt + kt

kT
Du(xt) · (xt′ − xt), all t, t′ ≤ T − 1,with t �= t′.

As in Matzkin and Richter (1991), define h : RL → R+, as h(x) =
√

‖x‖2 + 1 − 1. Function h is C2 and strongly
convex, satisfies that h(x) = 0 only for x = 0, and the value of all its partial derivatives always lies in [0, 1).

Since T is finite, there exists γ > 0 such that

�u(xT ) < vt + kt

kT
Du(xt) · (xT − xt) − γh(xT − xt),

and

vt′ < vt + kt

kT
Du(xt) · (xt′ − xt) − γh(xt′ − xt),

for all t, t′ ≤ T − 1, t �= t′. Further, restrict γ to

0 < γ < min
l≤L,t≤T−1

kt

kT

∂u

∂xl

(xt).

Now, for each t ≤ T − 1, define φt : RL → R by

φt(x) = ut + kt

kT
Du(xt) · (x − xt) − γh(x − xt),

while φT : RL → R is given by φT (x) = �u(x). Notice that every φt function is strictly concave, whereas, for each
t ≤ T − 1 and every l ∈ {1, . . . , L},

∂φt

∂xl

(x) = kt

kT

∂u

∂xl

(xt) − γ
∂h

∂xl

(x − xt) >
kt

kT

∂u

∂xl

(xt) − γ > 0.

Define ũ : RL+ → R by ũ(x) = min{φ1(x), . . . , φT (x)}. Function ũ is continuous, strongly concave, strictly mono-
tone and differentiable almost everywhere. Differentiability everywhere can be obtained as in Chiappori and Rochet
(1987). By continuity, for each t there exists εt > 0 such that, for all x ∈ Bεt (x

t), u(x) = φt(x). �

Appendix 2. Solutions to the system in Proposition 2

Some general cases in which the system introduced in Proposition 2 has a solution are presented here.
Fix an individual, i, and define �t

s = ∑
j �=iλ

j,t
s /λi,t

s . For the sake of simplicity, ignore, from now on, the superindex
i. Define

Mt
s = {t′ ≤ T − 1 : Dus(x

t
s) · (xt′

s − xt
s) < 0}

and

Pt
s = {t′ ≤ T − 1 : Dus(x

t
s) · (xt′

s − xt
s) > 0}.

2.1. Perturbation to the gradients at all t

Define

M
t = {s : Dus(x

t
s) · (xT

s − xt
s) < 0},



A. Carvajal, H.M. Polemarchakis / Journal of Mathematical Economics 44 (2008) 167–179 177

P
t = {s : Dus(x

t
s) · (xT

s − xt
s) > 0},

M = {(s, t) : t ≤ T − 1 ∧ Dus(x
T
s )(xT

s − xt
s) < 0},

P = {(s, t) : t ≤ T − 1 ∧ Dus(x
T
s )(xT

s − xt
s) > 0},

and denote

Lt
s = maxt′ ∈ Pt

s

�t′
s (us(xt′

s ) − us(xT
s )) − �t

s(us(xt
s) − us(xT

s ))

Dus(xt
s) · (xt′

s − xt
s)

,

Ut
s = min

t′ ∈ Mt
s

�t′
s (us(xt′

s ) − us(xT
s )) − �t

s(us(xt
s) − us(xT

s ))

Dus(xt
s) · (xt′

s − xt
s)

,

L
t = maxs ∈Mt�t

s,U
t = mins ∈Pt�t

s, U = min(s,t) ∈ M�t
s/�

T
s , and L = max(s,t) ∈ P�t

s/�
T
s .

Suppose that

1. L ≤ U;
2. for all t ≤ T − 1 and all s, Mt

s ∪ Pt
s = {1, . . . , T − 1};

3. for all t, [Lt ,Ut] ∩ ⋂
s(L

t
s, U

t
s) �= ∅.

and let

1. kT ∈ [L, U];
2. for all t ≤ T − 1 and all s, μt

s = �t
s(us(xt

s) − us(xT
s ));

3. for all t, kt ∈ [Lt ,Ut] ∩ ⋂
s(L

t
s, U

t
s).

By strong concavity, us(xt′
s ) < us(xt

s) + Dus(xt
s) · (xt′

s − xt
s), for all s and all t, t′ ≤ T, t �= t′.

Fix s and t ≤ T − 1. Since �t
s > 0, we have that �t

sDus(xt
s) · (xt

s − xT
s ) < μt

s. Then: if Dus(xt
s) · (xT

s − xt
s) < 0,

since kt ≥ �t
s, then μt

s > ktDus(xt
s) · (xt

s − xT
s ); if Dus(xt

s) · (xT
s − xt

s) > 0, since kt≤�t
s, then μt

s>ktDus(xt
s)·(xt

s−xT
s );

if, alternatively, Dus(xt
s) · (xT

s − xt
s) = 0, then μt

s > 0 = ktDus(xt
s) · (xt

s − xT
s ). This yields the first equation of the

system.
Again, since �t

s > 0, we have that μt
s < �t

sDus(xT
s ) · (xt

s − xT
s ). Then: if Dus(xT

s ) · (xt
s − xT

s ) > 0, since
kT ≥ �t

s/�
T
s , then μt

s < kT �T
s Dus(xT

s ) · (xt
s − xT

s ); if Dus(xT
s ) · (xt

s − xT
s ) < 0, since kT ≤ �t

s/�
T
s , then μt

s <

kT �T
s Dus(xT

s ) · (xt
s − xT

s ); if, alternatively, Dus(xT
s ) · (xt

s − xT
s ) = 0, then μt

s < 0 = kT �T
s Dus(xT

s ) · (xt
s − xT

s ). This
yields the second equation of the system.

Now, fix s and t, t′ ≤ T − 1, t �= t′. If Dus(xt
s) · (xt′

s − xt
s) > 0, since

kt >
�t′

s (us(xt′
s − us(xT

s ))) − �t
s(us(xt

s − us(xT
s )))

Dus(xt
s) · (xt′

s − xt
s)

,

it follows by construction that μt′
s < μt

s + ktDus(xt
s) · (xt′

s − xt
s). If, on the other hand, Dus(xt

s) · (xt′
s − xt

s) < 0, since

kt <
�t′

s (us(xt′
s − us(xT

s ))) − �t
s(us(xt

s − us(xT
s )))

Dus(xt
s) · (xt′

s − xt
s)

,

it follows again that μt′
s < μt

s + ktDus(xt
s) · (xt′

s − xt
s). Finally, notice that Dus(xt

s) · (xt′
s − xt

s) = 0 does not occur, by
assumption. This yields the third condition of the system.
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2.2. Perturbation to the gradients at T only

Suppose that there are s and s′ such that PT
s �= ∅ and MT

s �= ∅, and denote that

L = maxs:PT
s �=∅maxt ∈ PT

s

us(xt
s) − us(xT

s )

�T
s Dus(xT

s ) · (xt
s − xT

s )

and

U = min
s:MT

s �=∅
min

t ∈ MT
s

us(xt
s) − us(xT

s )

�T
s Dus(xT

s ) · (xt
s − xT

s )
.

Suppose that L < U. Let

1. kT ∈ (max{0, L}, U);
2. for all t ≤ T − 1 and all s, let μt

s = us(xt
s) − us(xT

s );
3. for all t, kt = 1.

Using strong concavity, the first and third conditions of the system are immediate. Now, fix s and t ≤ T − 1. If
Dus(xT

s ) · (xt
s − xT

s ) > 0, then

kT >
us(xt

s) − us(xT
s )

�T
s Dus(xT

s ) · (xt
s − xT

s )
,

so μt
s < kT �T

s Dus(xT
s ) · (xt

s − xT
s ). If Dus(xT

s ) · (xt
s − xT

s ) < 0, then

kT <
us(xt

s) − us(xT
s )

�T
s Dus(xT

s ) · (xt
s − xT

s )

so μt
s < kT �T

s Dus(xT
s ) · (xt

s − xT
s ). Finally, if Dus(xT

s ) · (xt
s − xT

s ) = 0, then us(xt
s) < us(xT

s ), so μt
s = us(xt

s) −
us(xT

s ) < 0 = kT �T
s Dus(xT

s ) · (xt
s − xT

s ). This yields the second condition of the system.
Notice that, by construction, for this case to apply it suffices that us(xt

s) ≤ us(xT
s ) whenever Dus(xT

s ) · (xt
s − xT

s ) > 0.
Notice also that the solution can easily be given if PT

s = ∅, for all s, but MT
s′ �= ∅ for some s′, or if MT

s = ∅, for all s,
but PT

s′ �= ∅ for some s′.
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