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Econometrica, Vol. 51, No. 3 (May, 1983)
EXPECTATIONS, DEMAND, AND OBSERVABILITY!

By H. M. POLEMARCHAKIS

Under the assumption that demand behavior depends on intertemporal preferences as
well as (point) expectations concerning future prices, it is demonstrated that under
plausible conditions rationality imposes no observable restrictions on the demand function
and expectations and preferences are observationally indistinguishable.

INTRODUCTION

IN THE CONTEXT of an economy with a complete system of markets, an agent is
said to be rational if and only if his demand function is derived from the
maximization of a preference pre-order subject to the budget constraint. Ques-
tions of rationality acquire an additional dimension when exchange takes place
sequentially, i.e., when the system of markets is incomplete. Following Grand-
mont [3], consider a situation where economic activity occurs at two temporally
distinct points (¢ = 1,2) and assume that there exists a unique, costlessly storable
medium of exchange referred to as money. An agent at time ¢ = 1 is character-
ized by his endowment vector w, his intertemporal utility function », and an
expectation formation mechanism ¢, which, for simplicity, I take to be a function
mapping current to future price systems. Utility and expectation functions are
unobservable. The observable characteristics of the agent consist—at most—of his
demand for current goods and possibly his endowment vector. The issues that
can now be raised are twofold: first, whether restrictions are imposed on the
demand for current goods by the assumption that it is derived from the
maximization of a quasi concave, monotone intertemporal utility function cou-
pled with a well defined expectation function; second, as is important for
questions of prediction and welfare, whether preferences # and expectations ¢ are
observationally distinguishable. I demonstrate that under plausible conditions the
assumption of rationality imposes no observable restrictions on the demand
function for current goods and preferences and expectations are observationally
indistinguishable: Variations solely in expectations are sufficient to generate the
entire range of demand functions for current goods and the same holds for
preferences, at least infinitesimally. I term the former the indeterminacy of
preferences, the latter the indeterminacy of expectations.

The implications of the indeterminacy result are clear: Restrictions on agents’
expectations (or preferences) alone cannot yield observable restrictions on behav-
ior. The latter require joint restrictions on expectations and intertemporal prefer-
ences. In particular, the indeterminacy of expectations suggests that economies in
which agents form expectations rationally may be indistinguishable from econo-
mies in which rationality fails. The implications of this observation concerning
macroeconomic policy have been looked at by Hamdani [5].

! This work was supported in part by National Science Foundation Grant SES 78-25910.
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566 H. M. POLEMARCHAKIS

Extensions of the argument are readily suggested: (i) Aspects of the agent’s
behavior in addition to the demand for current goods may be observable. (ii)
Expectations may involve probability measures over future price systems. The
results in Polemarchakis and Selden [6] concerning the recoverability of inter-
temporal von Neumann-Morgenstern cardinal utility indices are related to this
point. (iii) If the stochastic nature of the economy is further specified, rationality
restrictions may be imposed on the agent’s expectations. Observe, however, that
such restrictions may affect the indeterminacy of preferences but not that of
expectations.

1. THE MODEL
Time periods are indexed by a subscript ¢, ¢ = 1,2. There are /, period 1
consumption goods indexed by a superscript 4, A, =1, ..., /,, and /, period 2
consumption goods indexed by a superscript h,, A, =1,...,7,. In addition,

there exists a costlessly storable medium of exchange referred to as money, whose
price is normalized to equal 1 in both periods. A price system for period ¢ is a
vector p, in Rf , £ =1,2. At period 1, only markets for period 1 consumption
goods and money are open. An agent is characterized by his consumption set X,
a convex subset of R"*%, his endowment w, a point in R"'*%, his intertemporal
utility function » defined on X, and his expectation function ¢ assigning to each
period 1 price system a unique period 2 price system. The following assumptions
are made throughout:

ASSUMPTION 0: X = Ri*2; w e X.

ASSUMPTION 1: u is a strictly quasi concave and twice continuously differentia-
ble function from X to R. At any x € X, Du(x)>0.

ASSUMPTION 2: ¢ is a continuous function from R to R .

In situations in which the differentiability of the demand function is of interest
I replace Assumptions 1 and 2 by the following stronger versions:

ASSUMPTION 1’: u is a strictly quasi concave and twice continuously differen-
tiable function from X to R. At any x € X, Du(x)>0 and the indifference
hypersurface through x has nowhere vanishing Gaussian curvature.

ASSUMPTION 2" ¢ is a continuously differentiable function from R’ to R% .

Assumption 0 is convenient to avoid boundary problems. Assumptions 1 and 2
guarantee the continuity of the demand function. Since the consumption set has
been taken to be open, the demand function may not be defined for some price
systems; this is of no importance, however, since we shall be dealing with
situations in which the demand function is known to be well defined. Assump-
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tions 1’ and 2’ guarantee the differentiability of the demand function for current
goods (see Debreu [2, pp. 612-613])).

The agent’s consumption set X is held constant in the analysis to follow, unlike
his endowment vector w, utility function u, and expectation function ¢. Conse-
quently, I refer to an agent as an ordered triplet (w,u,¢). The demand function
for current goods by an agent (w, u, ¢) is derived by projecting from the solution
to the following maximization problem:

1 Max u(x,;,x subject to
M (g ey (12%2) !

Pix1 + &(p1)'xy = piw, + pyw,.

By Assumption 1 and the Kuhn-Tucker theorem, (x§,x¥) € X solves (1) if and
only if there exists A* > 0 such that

.1 Du(xt,x¥)=A*p,,
22) Dyu(xt,x3) = N*(py),

(2.3) Pix1 + &(p1)'xy = piw; + &(p1)'ws,

where D,u is the vector of partial derivatives of u with respect to x,, = 1,2. By
the strict quasi concavity of u, given p, € RCL , the triple (x¥, x¥,A*) satisfying
(2.1)-(2.3) is unique—if it exists. I denote it by x,(p,), x,(p;), A(p,), which are
continuous functions of p,. Under the stronger regularity Assumptions 1’ and 2’,
x1(p1)s x(py), and A(p;) become continuously differentiable functions of p,.

REMARK 1: At this point a comment is required concerning the structure of
the financial market. Following the practice common in the theory of temporary
equilibrium, I have postulated the existence of a unique medium of transfer—
money. The question follows whether agents are allowed to borrow during the
first period in their life, and, if so, at what rate of interest. To restrict agents to
nonnegative money holdings is undesirable. For simplicity, I have gone to the
other extreme and I have postulated that money can be borrowed costlessly; i.e.,
the interest rate is fixed and equal to zero. The particular level at which the rate
of interest is fixed is, of course, immaterial. Furthermore, the results that I shall
derive will depend on the number of current (/;) relative to the number of future
(4,) commodities. To extend the results to the case of a variable interest rate one
only needs to augment the number of current goods by 1 to (/; + 1).

2. THE INDETERMINACY OF PREFERENCES

In this section I look into conditions under which variations in the demand
function for current goods can be accounted for by variations solely in the
expectation function. Let U* be the family of utility functions 4* such that (i) u*
satisfies Assumption 1, and (i) given any continuous function f(p,): RL >Rz
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and any initial endowment vector w = (w,,w,) € R/1* 2, there exists an expecta-
tion function ¢ satisfying Assumption 2 such that the agent (w,u*, ) generates
demand for current goods x,(p,) equal to f(p,) everywhere on R’ 1 . The question
of indeterminacy of preferences reduces then to the question whether the class
U* is empty or not.

PROPOSITION 1: U* is not empty if and only if I, > I,.

Proor: First the proof of sufficiency: Let

h ;o ;a
@ W) =(1/a6) 3 [(<1) + ()" + /) > ()

j=h+

0<a<l, 0<B<L],

and suppose that x; ERY, p, €RY, and w=(w;,w) € R’y*" are arbitrarily
given. I shall first show that there exist x, € Rz, €R2, and A €R, such that

4.1) Dyu*(xy,X;) = Apy s
“4.2) D,u*(x,,x,) = A,

4.3) Pix, + p3xy = piw; + ¢'w,.

Pick k & (0, min, Y’) where v/ = (p{)"'(x{)*~", j=1,..., ;. Then Diu*(x,,
y)=kp{,j=1,...,1, implies that
j j N1/(B=1),  n(—a)/(B—1)—a 1/a .
yi= (xlj)[(kp’) (xi) - 1] G=1,..., 1)

Furthermore, if g/ = (1/k)Diu*(x,, y),

1/(B-1) Q-a)/(B—D)—a (a=1)/a
g’ = ()| (k) """ (x1) 1] and

(Plxl)[(k )1/(/3 1)( )((1—01)/(13—1))—0‘ _ 1] (= ..., 1)

Forj=1+1,...,15, we set y/ = w’ and ¢/ = (1/k)(wh) .

It is now easy to see that, for some ke (O, mmjyf) 1f one sets A = K, ¢=gq,
and x, = y, equations (4.1), (4.2), and (4.3) are satisfied. Observe that (4.1) and
(4.2) hold for all ke (0, min, v/ ) by the construction of ¢ and y. Consequently,
we must show that there ex1sts ke (O, mm v/) such that

1| Il
Q) Z pixi+qhy’/ = 2 piwi+ qwi.
=1 j=1

But as k tends to (min, v/), the left hand side of (5) tends to a finite limit and the
right hand side to 1nf1n1ty, while the reverse holds as k tends to 0. Since the
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dependence on k is continuous, (5) is indeed satisfied for some ke (0, min, v9).
To complete the argument for sufficiency, it must be shown that the solutlon
¢(py) is a continuous function of p,; equivalently, that k is a continuous function
of p, k( py)- Considering the left hand side and right hand side of (5) as function,
L(k; p,) and R(k; py), respectlvely, we see that

_a% =[1/(B-1)] 2 () (x,)(ﬂ(l—a»/(ﬁ—l)(kp,-)(z—m/(ﬁ—1)

while

8~ [~ /(a8 1) 2(,»{) (wd)(x) O

X (kplj)(z-ﬁ)/(ﬁ—1)((kplj)1/(ﬂ—1)(xl,~)((1—a)/(ﬂ_l»_a _ 1)_,/a

Since 0 < a, B < 1, and k € (0, min, v/), for all p, and k, (0L/dk) <0 while
(dR/9k) > 0. Consider now the solutlon k(p,) to the equation L(k; p,) = R(k;
p1)- The solution exists by the preceding argument and is unique by monotonic-
ity. Furthermore, the curves L(k; p,) and R(k; p,) intersect transversally, since
the first is an increasing while the second is a decreasing function of the variable
k. The uniqueness of the intersection, combined with the continuity in p, of both
curves, implies the continuity of the solution K( p1)- The argument for sufficiency
is now complete, since the utility function u* clearly satisfies Assumption 1.

The argument for necessity is as follows: For fixed x, € R’ consider D,u(%,,
'x,) as a continuously differentiable function from R2 to R . Slnce I, < I, there
exists p; € R’ such that the equation D u(X,,x,) = Ap, has at most a discrete set
of solutions; this is an immediate consequence of Sard’s theorem applied to the
function [(1/A)D,u(X,,x,)]): Ri*'>R’ . Consequently, there exist values for
w = (w,, w,) for which the system of equations (4) has no solution. Q.E.D.

COROLLARY 1: If I, > 2, U* contains no additively separable utility functions.

ProoF: Let p; and p, be two linearly independent vectors in R, and let
x,(p) and X,(p,) be two continuous functions from R: to RL “such that
x,( )= % ( p,) Suppose U* contains an additively separable utility function—
e, u* e U* and u*(x,,x,) = uf(x;) + u3(x,). It follows that for any X,, X, in
R}r » Dyu*(x(p)), X)) = Du *(%,(p)),X,). But a necessary condition for u* to
generate X,(p;) and X,(p,) is that Dlu*(xl(pl),x2) Ap, and Du*(xX,(p)), %))
= Ap,. It follows that A, = Ap,. Since p, and p, were chosen not to be colinear
this implies that A = A = 0 which violates Assumption 1. Q.E.D.

Proposition 1 shows that if the number of future commodities (/,) is at least as
great as the number of current commodities (/;) indeterminacy of preferences
prevails. Since the future period can be interpreted to represent all future
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transactions of an agent, it is reasonable to suppose that /, is indeed at least as
great as /,. Furthermore, no restriction was imposed on x,(p,)—the demand
function for current goods—other than continuity. Consequently, the question
whether rationality imposes any restrictions on the demand function for current
goods is answered negatively by the following proposition:

PROPOSITION 2: If I,>1;, any continuous function x,(p,): R >R2 is the
demand function for current goods of an agent (w,u, ) satisfying Assumptions 0, 1,
and 2.

Proor: It follows from Proposition 1. Q.E.D.

REMARK 2: In [4] Gausch demonstrated the sufficiency part of Proposition 1
for the special case [, = [, = 1.

3. THE INDETERMINACY OF EXPECTATIONS

It was the object of the previous section to demonstrate that any variation in
the demand function for current goods can be attributed to variations in the
expectation function. In this section I take the opposite point of view. I look into
the conditions under which at least any infinitesimal variation in the observable
characteristics of an agent can be attributed solely to variations in the intertem-
poral utility function u. Let ®* be the family of expectation functions ¢* such
that (i) ¢* satisfies Assumption 2/, and (ii) given any continuous function f(p,):
R —>R% , any initial endowment vector w = (w,,w,) € R'*%, and any p, € R’}
there exists a utility function u satisfying Assumption 1’ such that the agent
(w, u, ¢*) generates demand for current goods x,(p,) equal to f( p,) infinitesimally
at p,, i.e., f(p) = x,(p,) and Df(p,) = Dx,(p,)- The question of (infinitesimal)
indeterinacy of expectations reduces then to the question whether ®* is empty
or not.

ProposiTION 3: If [, > 1, + 1, ®* is not empty. An expectation function ¢*
satisfying Assumption 2’ lies in ®* if and only if D$*(p,) has rank 1, everywhere
on R .

Proor: For the proof of Proposition 3 I need the following lemmas:

LeMMA 1: Let A be a symmetric negative definite matrix of order (n, X n,), and
B an arbitrary matrix of order (ny X n)), ny, n, > 1. There exists a symmetric
matrix C of order (ny X n,) such that the matrix M defined by

[y
B C

is symmetric and negative definite.
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PrOOF OF LEMMA 1: For a > 0, let the matrix M(«) be defined by

M(a) =[g _B;I].

It is clearly symmetric, and, as the following argument shows, it is also negative
definite provided « is large. For any y €R"*" let y = (y,, y,), where y, €R™
and y, € R™. To demonstrate that M(a) is negative definite, it suffices to show
that y'M(a)y <O for all y in S™*"~1  the (n, + n, — 1) dimensional sphere.
Consequently, we can assume that ||(y;, y,)|| = 1. The product y’M(a)y can be
written as y{Ay, + 2y{B'y, — a|| y,||. There exist constants n > 0 and 6 > 0 such
that 2y By, <yl - | vall < mll vl and, for y, # 0, yidy, < —8]| y,|*. Observe
that if || y,|| is small || y,|| must be close to 1 in order that ||(y,, y,)|| = 1. Hence,
there exists 7, such that 7| y,|| — 0||yl|| < 0 for all y, with || y,|| < || 7,||. Choos-
ing & large enough such that — a|| y,||> + 7| y,|| < 0 for all y, with || 7,|| < || .|l
< 1 proves that M(«) is negative definite for a large. Q.E.D.

LEMMA 2: Let A be a symmetric negative definite matrix of order (n, X n,) and
B a matrix of order (ny X n)) such that, for a given vector (a',b )E[R”'*"’2

aA+b'B=0, ny>1, ny,>2. There exists a symmetric matrix C of order
(ny X ny) such that the matrix M defined by

M=[A B!
B C

is symmetric and negative semi-definite, and (a‘,b")M = 0.

PROOF OF LEMMA 2: Let B be the matrix of order ((ny — 1) X ny) obtained
from B by deleting the last row. By Lemma 2, there  exists a symmetric matrix ¢
of order ((n, — 1) X (n, — 1)) such that the matrix M defined by

A - fi: BAAI
B C
is symmetric and negative definite. Given M, the symmetry and adding up
constraints uniquely define the matrix

M= [A B! ]
B C
Since M is symmetric, it is negative semi-definite if and only if | M, |(—1)* > 0 for
k=1, » (ny + ny), where M, denotes the kth principal minor of M. Now for
k< (n1 + n,— 1), [M| = |M,| and hence the inequality holds by the negatlve
definiteness of M. Since (a’,b’)M %0 and (a’,b’)#0, M|=|M, ,,|=

0. E.D.
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LEMMA 3: Let

=_| Kn K

1?21 1?22

be a ((I, + L)X (I, + L)) matrix, X =(X,,X,), W= (W,W,), and p= (P P2)
vectors in Ri+% | © = (T,,0,) a vector in R, and F a (I, X 1,) matrix such that:
() K is symmetrtc, negative semi- defmtte, of rank (l1 +1,— 1), and (p{, p 2)K 0;
(i) p/o, + psb, = 1; (iii) piX, + p3X, = p{w, + pyw,, I, > 1, [, > 2. Then there
exists an agent (w, u, ) satisfying Assumptions 0, 1, and 2 whose demand function
x(py) = (x,(p1), x5 p,)) and expectation mechanism satisfy the following conditions:

(€)) x(P1) = (%15 %2);

Dx\(p,) = Ky, — K,F —5,(%, — W) — (X, — W,)'F,
Dxy(py) = Ky + K F —5,(%, — Wy)' — 8y(%, — W,)'F;
© &(P1) = P2

(@) D¢(p)) = F.

(®

ProoF OF LEMMA 3: Let € be an arbitrary real number and consider the matrix

Observe that since 5’0 =1 while p’K =0, & & [K]. Consequently, D is invertible.
Let

[7” _ q
— qt z
—the form of D _'_follows from_the symmetry of D. Since rank (K) =1, + [, +
1, Z=0. Since g')K =0, §' €[K]- =[p]), and hence § = kp for some k. But
g'c = 1 implies that kp'c = 1 and hence k = 1; so § = p by construction. I shall
now show that, restricted to [p]", U” defines a negative definite quadratic form.
By a theorem of Debreu [1], it suffices to demonstrate that the quadratic form
[U” — ppp'] is negative definite for some p € R. Let p = 1 — &. Then

D '=

[(_/” _ “ppt][f_t—x—)t] = (7//1?_ l_/”ﬁt_Jt+ Mﬁﬁ'

=I—po' +epo’ — ppo' = I.

Since K is negative on [p]- and © & [K], [K — v5'] is negative definite. Since
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[U” — upp'1=[K — 01", [U” — ppp'] is negative definite as desired. To com-
plete the proof I must demonstrate that there exists a utility function u satisfying
Assumption 1’ and an expectation function ¢ satisfying Assumption 2’ such that

D%u(x)= U", (p,) = p,, and D¢(p,) = F. But this is evident. Q.E.D.

Proor or ProrosITION 3: It suffices to demonstrate that conditions (a)
through (d) in Lemma 3 impose no restrictions on the Jacobian Dx,. By Lemma
2, (a) and (b) are satisfied if K,,(p,) is a negative definite matrix of order (/, X /})
and K,,(p,) is a matrix of order (/, X /,) such that p{K,,(p,) + ¢(p,)'K,(p)) = 0.
With no loss of generality let

Do) = ¢]

where D¢(p,) is of order (/, X [|) and [ is the identity matrix of order (/; X /)).
Let v,(p;) =0, and let 4 be an arbitrary matrix of order (/; X /;). Define K;,(,)
by K,(p))=A — K, (p,) and derive K ,(p,) by adjoining (/, — ;) rows to
Ki)(py) so as to satisfy piK;(p)) + ¢(p)'Ki(p;) = 0. This is clearly possible
since /,>1,+1 and (p{,¢(p,)") ER'1*2. Then Dx,(p,) = A—as desired.

Q.E.D.

Proposition 3 characterizes a class of expectation functions, ®*, which can be
employed to yield the infinitesimal indeterminacy of expectations.

REMARK 3: The assumption that D¢(p,) has everywhere full rank is essential
for Proposition 3. In particular, consider the static expectation function ¢(p,)
= p,, where D¢(p,) = 0 for all p,. Then the Jacobian Dx,(p,) is negative definite
on the orthogonal complement of (x, — w,) and hence it is not arbitrary.

REMARK 4: The assumption that /, >/, + 1 is essential. In the case /; = /,, the
following argument shows that one rational agent may not suffice to locally
generate an arbitrary current demand function. Consider the economy with
I, = I, = 1. If ¢(p,) is specified, and since the initial endowment is assumed to be
observable, the observed x,(p,) fully defines x,(p,) by

P
X)(p1) = Wa— m (x1(p1) — W)
and reveals the individual’s offer curve. Since the income effect vanishes at the
initial endowment point, Dx,(p) is not arbitrary.

The global indeterminacy of expectations is an open question.

Columbia University

Manuscript received October, 1978; final revision received June, 1982.
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