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Under the assumption that asset markets are possibly incomplete, conditions are examined 
under which an agent’s asset demand correspondence can be used to recover without ambiguity 
his subjective joint distribution of returns of the various assets and/or his von Neumann- 
Morgenstern cardinal utility index. 

1. Introduction 

Individual choice under uncertainty depends on an agent’s attitudes 
towards risk - typically represented by his von Neumann-Morgenstern 
cardinal utility index - and probabilistic beliefs - typically summarized by 
his subjective joint distribution of returns of the available assets. Both of 
these characteristics are however unobservable. What is in principle at least 
observable is the agent’s response to alternative opportunity sets - typically 
described by his asset demand correspondence. 

A variety of problems of prediction and welfare require conclusions 
concerning an agent’s unobservable characteristics to be drawn from his 
observable behavior. Consider for example the case of a firm in an economy 
with incomplete markets. Computation of its market value under alternative 
production plans requires knowledge of the marginal shareholder’s von 
Neumann-Morgenstern cardinal utility index. The question is whether the 
latter can be unambiguously deduced from his choice among existing assets. 
Alternatively, suppose that an agent is known to possess superior 
information concerning an uncertain prospect. For a second, less informed, 
agent to be able to acquire this additional information from market data, it 
must be the case that the better informed agent’s beliefs can be 
unambiguously recovered from his demand behavior. If it turns out that in 
plausible environments demand behavior fails to reveal an agent’s 
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information - probabilistic beliefs - then doubts are cast on the validity of, 
among others, the efficient markets hypothesis - equilibrium prices are then 
bound to fail to reveal the relevant informati0n.l 

This paper analyzes the recoverability of attitudes towards risk and 
probabilistic beliefs from the asset demand corespondence. The recoverability 
of the von Neumann-Morgenstern utility index from asset demands under 
the assumption that the agent’s beliefs concerning the joint distribution of 
returns of the various assets are known has been dealt with elsewhere - 
Dybvig and Polemarchakis (1981), Green, Lau and Polemarchakis (1979). 
Consequently, I concentrate here on the recoverability of probabilistic beliefs, 
as well as the simulataneous recoverability of attitudes towards risk and 
probabilistic beliefs. 

Before specifying formally the agent’s allocation problem, a few 
clarificatory remarks are in order: 

(i) The essential asnert nf the remverahilitv nrnhbm analv~d in thic nsn~r r--- -- _-__ ____. __I_ ---., ~-yv.~.-. U”U’JY’._. 111 Llll” y’uy”’ 
is the incompleteness of markets. Strong regularity assumptions are 
made concerning the agent’s unobservable characteristics, which render 
recoverability in a complete market setting immediate. 

(ii) The central role attached to the incompleteness of markets differentiates 
the problem at hand from similar problems in which ‘experiments’ or 
‘environments’ are specifically designed so as to elicit an agent’s 
unobservable characteristics - see, for example, Shapiro and Richter 
(1978). 

(iii) Recoverability is analyzed here in the simplest possible framework - 
the one-period, one-attribute resource allocation problem. Extensions to 
more sophisticated choice frameworks are evident. 

An agent with von Neumann-Morgenstern cardinal utility index u(w), 
defined on an interval 9, subset of R, must allocate his initial wealth, 
normalized to equal unity, among m assets, m 2 2, indexed by j, j E { 1,. , ., m}. 
States of nature are indexed by s, SE S. The agent’s subjective joint 
distribution of returns of the m assets is described by the probability measure 
rc defined on the measurabie space (S, 9”) - where Y is a a-field on S - and 
by the family of random variables R={rj(j= l,.. .,m> defined on @,Y,r~n).~ 
The pair (rc, R) is thus the subjective asset return structure. I use r to denote 
the vector r = (rl , . . ., rj, . . ., r,,J. A price system is a vector p=(pl,. . .,p,) and a 
portfolio a vector x =(x1,. . ., x,); neither x nor p are required to be non- 
negative. Faced with prices p, the agent chooses x(p) so as to maximize his 

‘A way out of the impass is to follow a ‘generic’ approach to the revelation problem - see 
Radner (1979). 

‘If S is discrete Y will be taken to be its power set and R will be a (IS/ x m) matrix and R a 
vector in RF’. 
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von Neumann-Morgenstern objective function $(x) = Eu(rx), subject to the 
budget constraint px= 1, as well as the feasibility constraint x EX, where X 
= {x E R" ) rx E 9 for a.a. SE S} is the set of feasible portfolios. An agent is 
thus fully described by the unobservable characteristics (u, rc, R), concerning 
which I shall make the following regularity assumption: 

Assumption 

(i) 

(ii) 

(iii) 

u is a twice continuously differentiable function defined on an interval 9 
subset of R; u' > 0 and u” 5 0 everywhere on 9;3,4 
the set of random variables R = {rj Ij= 1,. . ., m} is linearly independent; 
rjE9 for a.a. se&j= l,...., m; 
if the utility index u is of class Ck on 52, then for any set of non-negative 
integers I, , . . ., l,, I, Q= 1 lj = 1, Is (k - l), the expression Er:’ . . . r$u(*)(rx) is 
well defined and differentiable for any XEX; furthermore, 

&Er:‘... rku”‘(rx)=ErF . . .rp+‘)... rfnmu(‘+l)(rx), j= l,..., m; 
J 

(iv) all moments and absolute moments of rj exists, j = 1,. . ., m; furthermore, 

limsupl[Elrjl”]li”=Lj< 00, 
n-m n 

j=l,...,m. 

An agent (u, n, R) is said to be a regular von Neumann-Morgenstern agent if 
his unobservable characteristics satisfy (iHiv) above. 

The regularity assumption merits some discussion. Assumption (i) is strong 
but standard, while the linear independence assumption in (ii) excludes 
redundant assets and is innocuous. That rjE $2 with probability one can be 
relaxed to the requirement that the support of rj be bounded from below (or 
above) as long as 9 is itself bounded from below (or above), but this is a 
matter of normalization; as such it is natural. Observe that an asset with 
support unbounded from above as well as from below never enters in a 
non-trivial way a feasible portfolio of an agent whose cardinal utility index 
is defined on a domain bounded from below or above. Assumption (iii) 
assures that the expectation operator and the differential operator commute; 
it is implied by the remaining regularity assumptions as long as the support 
of the random variables is compact (even more finite), but this would be too 
strong a restriction in the present framework. Finally, assumption (iv) is 

‘For Y c R, P denotes its interior; for a function f, f (Ir) denotes the kth derivative. The 

notations f’ and j”’ or f” and f”’ are used interchangably; so are R, and [O, co) or R+ and 
(0, co). 

41f the domain Y of a functionfis closed,fis said to be of class C’ on Y if and only if there 
exists an extension off to an open neighborhood of I: 
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purely technical and its function can be explained as follows: Given a 
random variable y with distribution function F, we can define the 
characteristic function VP: R-4 by q(t) = E(eitY). Furthermore, since distinct 
distributions have distinct characteristic functions, to recover the distribution 
function F it suffices to recover the characteristic function cp. If in addition 

lims~p~[E(~y~“)]~‘“=1.<m, 
n+ao n 

the characteristic function is analytic in a neighborhood of the real axis and 
hence determined by its power series about the origin. Since cp(“‘(O) =i”E(y”), 
the characteristic function - and hence the distribution function F as well 
- is completely determined by the moments of the random variable.5 It is 
this latter property that we use in the argument for recoverability of 
probabilistic beliefs. 

On a different level, it can be argued that there is some arbitrariness 
involved in the specification of the asset return structure (z,R).~ Agents’ 
preferences are, strictly speaking, defined over distributions of returns and 
portfolios are chosen based on the distribution of returns they generate. The 
point is well taken and the answer straightforward. Clearly, given (z,R), the 
distribution of returns of any feasible portfolio - rx for x EX - can be 
computed without ambiguity. On the other hand, if (n,R) is not known, we 
can recover at best the equivalence class of return structures which generate 
the same distribution for any feasible portfolio. I use the term distinct asset 
return structures to mean that they generate distinct distribution functions 
for some feasible portfolio. Equivalently, the asset return structure will be 
“,:A tr\ L. ..,,,..,..“l.l, .,.:+I.,.., lA,..:+.. :4- +l., A:,+..:L..4:,.. ,4- F,.“.dl-.l, 
XllU L” “6 IGb”“cTla”lG Wll‘l”“L iimul~ulry 11 LUG UlJLll”ULl”ll “1 anq’ IGclJI”IG 

portfolio can be determined without ambiguity. 
The observable characteristics of the agent (u, n,R) consist of the demand 

correspondence x(p) defined as the solution to the problem 

max Eu(rx) s.t. px = 1. 
xex 

(1) 

A solution to (1) may of course not exist for an arbitrary PER”. We denote 
by P the subset of R” on which a solution to (1) exists, Knowledge of the 
demand correspondence entails knowledge of P. 

The question of recoverability can now be formulated as follows: Is the 
information contained in the demand correspondence x(p) suflicient to 
recover without ambiguity the unobservable characteristics (u, 71, R)? 
Recoverability without ambiguity requires that the generating characteristics 

‘For proofs connected with this argument, see Feller (1966, vol. 2, p. 487). 
61 wish to thank L. Selden for emphasizing this issue and helping me in clarifying it. 
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be unique and that they be computable - in some way - from the demand 

correspondence. A milder requirement would involve the first but not 

necessarily the second. 
It is of course conceivable that the demand correspondence has been 

derived from a more general class of characteristics than those satisfying the 
regularity assumption. Furthermore, the objective function need not be von 
Neumann-Morgenstern. This is not an issue I want to consider; here I raise 
the question of recoverability of the unobservable characteristics under the 
assumption that the latter satisfy the conditions of regularity and in 
particular that the objective function maximized is indeed von Neumann- 

Morgenstern and state independent. 
The requirement of recoverability is excessively strong - i.e., it fails, as 

examples demonstrate later on. Consequently we are led to examine 

conditions under which independent knowledge of some of the unobservable 
characteristics, in addition to the demand cor.respondence, s&ices to recover 
unambiguously the remaining ones. 

2. From probabiktic beliefs to cardinal utility 

This problem &as handled in Green, Lau and Polemarchakis (1979) and 
Dybvig and Polemarchakis (1981). There it was demonstrated that given 
(rc, R) recoverability of u holds under two alternative sets of conditions: 

Proposition 1 [Green, Lau and Polemarchakis (1979)]. Zf the utility index 
u of a regular von Neumann-Morgenstern agent is analytic on 9 = [0, co) and 
if the asset return characteristics (qR) are known, the utility index u can be 
recovered without ambiguity - within the class of utility indices analytic on 

CO, 00). 

Proposition 2 [Dybvig and Polemarchakis (1981)]. 1f a linear combination 
of assets is riskless and if the variance of the distribution of returns of a risky 
asset, as well as the return of the riskless, are known, the utility index u of a 
regular von Neumann-Morgenstern agent can be recovered without ambiguity 
on a. 

The above Propositions 1 and 2 leave open two questions: First whether 
recoverability can be attained in the absence of analyticity as well as of a 

riskless asset; second whether recoverability can be attained in the absence of 
knowledge of the variance of the distribution of returns of a risky asset or 
the return of the riskless one. Concerning the first question, a class of 
examples’ were given in Dybvig and Polemarchakis (1981) to show that 

‘These examples generalized the counterexample to recoverability developed and 
communicated privately by A. McLennan and H. Sonnonschein - see McLennan (1979). 
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recoverability may fail if no linear combination of the assets is known to be 
riskless, even under the assumption of regularity of the agent’s characteristics. 
The second question refers to the possibility of simultaneous recoverability of 
attitudes towards risk and probabilistic beliefs. It is taken up in section 4. 

3. From cardinal utility to probabilistic beliefs 

Reversing point of view from the previous section we now suppose that - 
in addition to the asset demand correspondence x(p) - the agent’s cardinal 
utility index u is known. We want to recover his asset return characteristics 
(rc,R). I shall first give two examples in which recoverability fails. Let 
u(w)=w*andS={1,2,3,4}, and suppose that the asset returns are known to be 

Then the objective function is 

6(x1, x2) = q(xl +x2)+ + nz(xl +2x,)+ + 7c3(4x, + 8x,)+ + 7cn4(9x1 + 18x,)+ 

= rci(Xi +x,)3 + (712 + 2713 + 37c,)(x, + 2x,)? 

Consequently, two state probability measures 7~ and rc’ will be indistinguish- 
able on the demand level as long as 

TC,=7C; and (7c2+27r3+37r4)=(7c~+27c~+37r~). 

On the other hand, rc and rr’ may generate different wealth distributions and 
would not lead to identical demand behavior for a different cardinal utility 
index. Recoverability thus fails. Similarly, for the same cardinal utility index 
and state space, suppose that the measure of state probabilities is known and 
equal to 

while asset returns are of the form 

R’= 1 1 a2 @’ y2 

1 2a2 2p2 2y2 1 for some a, p, y. 

Then the objective function is 

$(x1,x2)=&x1 +x2)+++(a2x, +2a2x2)t-+&32x, +2~2x2)+++((y2x, +2y2x2)+ 

=%(x1 +x,)++&a+fi+y)(x, +2x,)+. 
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Consequently, two distinct asset returns R and R’ will be indistinguishable 

on the demand level as long as (~+p+y)=(a’+p’+$). Since R and R’ may 
clearly generate different wealth distributions, recoverability again fails. 

Having given examples in which recoverability fails, I now want to 
demonstrate that recoverability can be obtained in the presence of a riskless 
asset with a known rate of return. Equivalently, that if, in addition to 
regularity, it is assumed that a given linear combination of the available 
assets is riskless and its return is known, then the asset demand 
correspondence x(p) in conjunction with the cardinal utility index u(w) is 
roughly speaking sufficient to recover the agent’s subjective asset return 
characteristics without ambiguity: 

Proposition 3. If a linear combination of assets is riskless with known return 
and if the utility index u of a regular von Neumann-Morgenstern agent is 
known, of class C” on 9 and u(“)(w) $0 on a, n = 1,2,. . ., the subjective asset 
return characteristics can be recovered without ambiguity. 

Proof For simplicity, suppose that there are only two assets, j= 1,2 and 

that rI = 1 for a.a. SES - the asset j= 1 is riskless with return of unity. Let 
P* denote the subset of P on which the solution to the maximization 
problem (1) is characterized by the first-order conditions 

By the regularity assumption on the characteristics (u, Z, R) there exists an 

Eu’(rx) = Ap,, 

Er,u’(rx) = Ap,, 

PIXI +pzx,= 1. 

(2) 

open set X*, containing 9 x [0], such that for xeX*X=x(pY) for a unique 
price system J?E P*. The inverse demand function p(x) is thus well defined on 

Ij x [0] and hence observable - observability follows from the observability 

of the demand correspondence x(p) on P *. Consider now the marginal rate of 
substitution function m(x)=(p,/p,)(x). The function is well defined on 
G x [0] cX*, and, furthermore, it follows from (2) that 

Er,u’(rx) = m(x)Eu’(rx). (3) 

By (iii) of the regularity assumption, if the utility index u(w) is of class Cm on 

9, so is the function m(x) on 9 x [0] c X*. For brevity of notation, let 

C&~‘(W) = dkU(w)/dwk and my)(x) = akm(x)/8x:, j= 1,2, 
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and 

Successive differentiation of (3) with respect to x2 then gives for any 120, 

Evaluating (4) at x = (a, 0), c( E a, and rearranging, we get for any 12 1, 

u(‘+ ‘)@)E[r:+ 1 -m(cc,O)r:]= .$ 
1 

0 k=l k 
m;(%o)u 

(I+ 1 pk'(a)Er;-k. 

For example, 

u(‘)(a)E[r, - m(a, 0)] = 0, 

~(~)(a)E[r; -m(a, O)r,] = #)(a, O)tP’(a), 

u’3’(cc)E[ri -m(cr, O)r:] = 2m$“(cr, O)z.~(~)(a)Er, + mL2)(cr, O)U”‘(CX), etc. 

It then follows that as long as, for any IZO, u”“‘(~)#O for some LX ~a, (5) 
can be used to recover without ambiguity the (I+ 1)st moment of the 

distribution of the random variable r2, Ery ‘, 1=0,1,. . . . Consider now the 

characteristic function 

cp2(t) E E(eir2’). (6) 

Knowledge of the distribution of the random variable r2 is equivalent to 
knowledge of the characteristic function cp2(t). But the regularity assumption 
(iv) guarantees [see Feller (1966, p. 487)] that the characteristics function 
(am is completely determined by its derivatives at the origin. Since cpy+‘)(O) 
=1 ‘(I+ ‘)Ery ‘, 1=0,1,. . ., the distribution of r2, and hence of any feasible 
portfolio, is determined. To complete the argument we must handle the case 
of multiple risky assets. The objective is to determine the distribution of 
returns of any feasible portfolio rx. Since rxE9 for a.a. seS, we can repeat 
the preceding argument with r2 replaced by rx. Q.E.D. 

The requirement that no derivative of the utility index u vanish identically 
in the argument for the recoverability of the complete distribution of any 
portfolio is not surprising. If for example the utility index u is polynomial, 
only finitely many moments of the distribution of the risky assets enter the 
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agents’ objective function and hence the possibility of distinct distributions 

generating the same asset demand function cannot be excluded. 
The assumption of existence of a riskless asset can be replaced by the 

assumption that there exists an asset - j= 1 for simplicity - such that the 
distribution of the random variable rI is known and its support is contained 
in [0, co), and that the domain of definition of the utility index, 9, contains 
the origin, i.e., [0, X) c .9: 

Proposition 4. If the distribution of returns of one asset is known and 
supported on [O, co) and if the utility index, u, of a regular von Neumann- 
Morgenstern agent is known, of class C” on [0, co) and u(“)(O) # 0, n = 1,2,. . ., 
the subjective asset return characteristics can be recovered without ambiguity. 

Proof. I shall only outline the argument since it is very much along the 
lines of the proof of Proposition 3. Without loss of generality we may 
suppose again that there is only one asset, j=2, other than the one whose 
distribution of returns is known. 

From the first-order conditions for a maximum, it follows that 

Er,u’(rx) = m(x)Er,u’(rx), (7) 

where the marginal rate of substitution function is well defined and of class 
C” on R, x [0] cX*. Successive differentiation of (7) with respect to x1 and 
x2, and evaluation at x =0 yields the following systems of equations: 

Er, = m(O)Er, , 

Er,r,u’2’(0) = m~l~o~(0)Er,u~‘~(O) + m(0)Er$&2)(0), 

Er$‘2’(0) = rn”, ‘)(O)Er,u(‘)(O) + m(0)Er,r2u(2)(0), 

Er,r$‘3’(0) = m ‘2T0’(0)Er,u(1)(0) + 2m ‘1’o’(0)Er&(2’(0)+m(O)Er~u(3)(O), 

Er$,u’3’(0) = rn(‘, ‘)(O)Er,r,u(‘)(O) + m(‘~0)(0)Er,r2u(2)(O) 

+ rn”, “Er$&2)(0) + m(0)Er:r2u(3)(0), 

(8) 

Er$r,u(3)(0) = m (3Y0)(0)Er,u(‘)(O) + m ‘2,0’(0)Er:~(2)(0) 

+ mc1qo)Er,r2u(2)(0) + m(0)Er:r2u(3)(0), 

Er$(3)(0) =m(3~o)Er,u(‘)(0) + 2m(“*‘)Er,r2u(2)(0) + m(0)Erlr$&3)(0). 
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Continuing in this fashion we can derive E(Y~,$), k, 20, l,zO, as long as 
u’+ ‘(0) #O, 12 0. By an argument exactly as before this suffices - given the 
regularity assumption (iii) - to recover the joint distribution of the random 
variables r1 and r2. Q.E.D. 

4. To cardinal utility as well as probabilistic beliefs 

It was demonstrated in the two preceding sections that as long as an 
agent’s characteristics are regular and a riskless asset is available observation 
of his asset demand correspondence is, roughly speaking, sufficient to render 
his subjective joint distribution of asset returns recoverable without 
ambiguity from independent knowledge of his cardinal utility index, and vice 
versa. As a matter of fact, however, independent knowledge either of an 
investor’s attitudes towards risk, or of his probabilistic beliefs is rather 

unlikely. We are thus led naturally to tackle the problem of simultaneous 
recoverability of the characteristics (u, n, R), from the asset demand function. 
The following corollary to Proposition 2 and 3 is clear: 

Corollary I. If a linear combination of assets is riskless, if the variance of the 
distribution of returns of a risky asset, as well as the return of the riskless asset, 
are known and if the utility index, u, is of class C” on 2 and u(“)(w)+0 on 9, 
n=1,2,..., the triple of characteristics (U,TC, R) of a regular von Neumann- 
Morgenstern agent can be recovered without ambiguity. 

That knowledge of the distribution of returns cannot be altogether 
dispensed with is evident by the following argument: Even if markets are 
complete, the agent with characteristics (u,rc, R) generates the same asset 
demand function as the agent (u*, rc, (l/k)R), where u*(w)= u(kw), any k > 0. 
An increase in the mean and variance of returns can be compensated for by 
a reciprocal reduction in the agent’s risk aversion so as to leave the 

observable demand behavior unchanged. The only remaining question is 
whether recoverability can be attained without knowledge of the variance of 
the returns of any risky asset. To see that this is not the case, consider the 
agent with cardinal utility index u(w) = -eepw, some p > 0, and suppose he 
must allocate his initial wealth of unity between a riskless asset with return 
equal to FI, fI ~0, and a risky asset whose return is normally distributed, 
with mean Fz, Fz > 0, and variance a:, 0; >O. A simple computation shows 
that the demand function for the risky asset is given by x,(p, ,pJ= 
[Fz -FI(pz/pI)]/(pa$. As a result, if either the return of the riskless asset, Fr, 
or the variance of the return of the risky asset & is not known, recoverabi- 
lity fails. 

Since that knowledge of the variance of the return of some risky asset is 
necessary for recoverability, we would like to describe the indeterminacy that 
would prevail in its absence. This is the object of the following: 
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Proposition 5. If a linear combination of assets is riskless, if the return of the 
riskless asset is known and if two distinct triples (u,z, R) and (ti,fi,@ of regular 
von Neumann-Morgenstern characteristics generate the same asset demand 
correspondence, then u”‘(w) = [zi”‘(~)]~, some 6 > 0, everywhere on %. 

Proof: The argument is straightforward. Denoting as before, by m(x) the 
marginal rate of substitution between the riskless and a (the) risky asset, 
differentiating the first-order conditions with respect to x and evaluating at 
(.x,,x~)=(cx,~), 3~52, we get 

u’“‘(a)/u”)(cr)=m~‘(cr,0)/8~, (9) 

where CJ$ = E(rz)- [E(rJ]‘. But if the triple (z&72, RI) generates the same 
demand function as (~,n, R), it generates the same marginal rate of 
substitution function as well and hence 

t;“‘(~)/z;“‘(~)=m’z”(ol,O)/d:. (10) 

From (9) and (lo), setting 6=6:/o; and integrating gives the- desired 

result. Q.E.D. 

To conclude the discussion of simultaneous recoverability of probabilistic 
beliefs and attitudes towards risk, the following must be pointed out: The 
example, using exponential utility and normally distributed returns for the 

risky asset, employed to demonstrate that knowledge of variance of some 
risky asset is necessary for recoverability, depends on the non-finiteness of 
the state space. It remains an open question whether - under the additional 
assumption that the support of the distribution of some risky asset is finite 
- the variance can be recovered as well. Even if true, however, the result 

would be of limited interest, since the state space is not, after all, an 
exogenous structure, but part of the subjective probabilistic beliefs of the 
agent. 
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